Joint Civil Engineering

Courses

J C ENGR 2160 Surveying: 3 semester hours
Horizontal and vertical control surveys, including traverses, triangulation, trilateration, and leveling; basic adjustments of observations; geologic data; coordinate systems. Basic route surveying, including horizontal and vertical curves.

J C ENGR 3360 Civil Engineering Materials Lab: 1 semester hour

J C ENGR 3410 Structural Analysis: 3 semester hours

J C ENGR 3420 Structural Design: 3 semester hours
Prerequisites: J M ENGR 3250, J C ENGR 3410. Fundamentals of structural design in steel, reinforced concrete, and timber. Familiarization with the sources of various design codes and practice in interpreting them. Computer graphics applications.

J C ENGR 3460 Transportation Engineering: 3 semester hours
Fundamental treatment of the planning, engineering, design, and procedural aspects of multimodal transportation are covered. Intermodal freight and urban transportation planning processes and overview of environmental, energy, and economic issues are discussed.

J C ENGR 3520 Water and Wastewater Treatment: 3 semester hours
Prerequisites: J M ENGR 3700 (may be taken concurrently) or permission of instructor. Application of the basic principles of chemistry, microbiology, and fluid mechanics to the analysis of environmental problems, especially those involving control of water and land contamination. Properties of municipal and industrial wastewater, solid waste, and hazardous waste. Estimation of assimilative capacity and other characteristics of receiving waters. Introduction to unit processes and unit operations used in the treatment of municipal and industrial wastewater. Design of processes and facilities used for treating drinking water, wastewater, and sludge disposal. Waste minimization and recycling in both industrial and municipal settings.

J C ENGR 3760 Hydraulic Engineering: 3 semester hours
Prerequisites: J M ENGR 3700. The principles of open channel flow will be discussed and illustrated with practical examples. Methods for channel design, storm sewer, culvert and bridge analysis will be presented using the concepts of gradually-varied, steady flow. A design project using computerized analysis and design is used to implement concepts in a large practical application.

J C ENGR 4000 Independent Study: 1-6 semester hours
Prerequisites: Junior standing and consent of faculty advisor. Independent investigation of a civil engineering topic of special interest to a student performed under the direction of a faculty member.

J C ENGR 4190 Soil Mechanics: 3 semester hours

J C ENGR 4200 Soil Exploration and Testing: 1 semester hour
Prerequisite: J C ENGR 4190 (may be taken concurrently). Soil exploration; in-situ soil testing, laboratory testing of soil; processing of test data using a microcomputer; statistical analysis of test data; use of test results in the decision-making process.

J C ENGR 4600 Highway and Traffic Engineering: 3 semester hours

J C ENGR 4630 Design of Steel Structures: 3 semester hours
Prerequisites: J C ENGR 3410, J C ENGR 3420. Behavior and design of steel frames by “allowable stress” and “maximum strength” based on deterministic and LRFD (Load-resistance factor design) methods. Design of beams, columns, beam-columns, plate girders, connections, multistory frames, and bridge girders. Torsional design of steel structures. Plastic analysis and design of steel structures. Miscellaneous topics in structural steel construction and design.

J C ENGR 4640 Foundation Engineering: 3 semester hours
Prerequisites: J C ENGR 3420, J C ENGR 4190, J C ENGR 4200. Principal problems in design and construction of foundations for bridges and buildings. Bearing capacity of deep and shallow foundations; pressure on retaining walls and shallow foundations; pressure on retaining walls and slope stability; modern developments in piling, cofferdams, open caissons, pneumatic caissons.

J C ENGR 4660 Advanced Design of Concrete Structures: 3 semester hours
Prerequisites: J M ENGR 3250, J C ENGR 3410, J C ENGR 3420. Flexural behavior and design, strength and deformation of rectangular and nonrectangular sections, shear strength, beam-columns, long columns, slab systems, design of frames, and footings will be covered.

J C ENGR 4670 Structure Design Projects: 3 semester hours
Prerequisite: Permission of instructor. Students carry out the complete design of typical and unusual building and bridge structures. Use of the computer as a design tool is emphasized. Projects are conducted in cooperation with production engineers.

J C ENGR 4720 Legal Aspects of Construction: 3 semester hours
Prerequisite: Junior standing or permission of instructor. A survey of the legal problems of the construction manager. Including but limited to, liability in the areas of contracts, agency, torts, insurance, bad judgement and oversight.
J C ENGR 4730 Construction Operations and Management: 3 semester hours
Prerequisite: Junior standing. The construction industry, its development, components, and organization. Contracting methods. Applications and limitations. Selection of equipment using production analysis and economics. Field engineering, including form design, shoring, embankment design. Purchasing and change orders. Safety and claims.

J C ENGR 4740 Economic Decisions in Engineering: 3 semester hours
Prerequisite: Junior standing. Principles of economics involved in engineering decisions. Decisions between alternatives based on the efficient allocation of resources. Topics include the time element in economics, analytical techniques for economy studies, and taxes.

J C ENGR 4830 Fundamentals of Surface Water Hydrology and Environmental Engineering: 3 semester hours
Prerequisites: Fluid Mechanics and senior status. The principles of the hydrologic cycle including precipitation, evaporation, transpiration, infiltration, runoff, streamflow, and groundwater will be discussed and illustrated. In addition, computational fundamentals of hydrologic analysis will be presented such as unit hydrographs, routing, data analysis, and flood frequency. Elements of quantitative problems in urban stormwater systems and management, water quality and urbanization. Concepts of sustainability and green engineering such as low impact development and other best management practices will be presented. Computer software will be utilized.

J C ENGR 4910 Water Hydrology and Hydraulic Design Project: 3 semester hours
Prerequisites: J M ENGR 3700, J C ENGR 3760, and J C ENGR 4830. This course is designed to provide seniors in Hydrology and Hydraulics with a major design/facility plan project. The principals of hydrologic and hydraulic design will be utilized in developing the hydrology, hydraulics and floodplain analysis for a local watershed or land area. Hydrologic analysis is performed to size hydraulic systems and evaluate watershed and floodplain performance. The course is structured to apply hydrologic theory and modeling techniques to engineering hydrology and hydraulics for watershed analysis, floodplain delineation, and urban stormwater. The student will also consider the next generation of hydrologic computation, watershed evaluation and the importance of severe storm impacts and flood management. Consideration of sustainability and green infrastructure practices will also be included. A final written report and class presentation of the design project is included.

J C ENGR 4950 Fundamentals of Engineering Review: 1 semester hour
Prerequisite: Senior standing. A review and preparation of the most recent NCEES Fundamentals of Engineering (FE) Exam specifications is offered in a classroom setting. Exam strategies will be illustrated using examples. The main topics for the review include engineering mathematics, statics, dynamics, fluids, heat transfer, mechanics of materials, hydraulics, transportation, environmental engineering, structural design and geotechnical engineering. A discussion of the importance and responsibilities of professional engineering licensure along with ethics will be included.

J C ENGR 4990 Senior Civil Engineering Seminar: 1 semester hour
Prerequisite: Senior standing. Students will research assigned topics of importance to graduates entering the Civil Engineering profession and prepare oral presentations and a written report. Student presentations will be augmented by lectures from practicing professionals. Topics include professional registration, early career development, graduate study, effective presentations, construction quality, and case histories of civil engineering projects.