J M ENGR 1413 Introduction To Engineering Design: CAD: 2 semester hours

An introduction to engineering design in the context of mechanical engineering. Students learn the fundamentals of spacial reasoning and graphical representation. Freehand sketching, including pictorial and orthographic views, are applied to the design process. Computer modeling techniques provide accuracy, analysis, and visualization tools necessary for the design of devices and machines. Topics in detailing design for production, including fasteners, dimensioning, tolerancing, and creation of part and assembly drawings are also included.

J M ENGR 1414 Introduction To Engineering Design: Project: 2 semester hours

An introduction to engineering design in the context of mechanical engineering. Students first complete a series of experiments that introduce physical pheonomena related to mechanical engineering. Understanding is achieved by designing and building simple devices and machines. The course proceeds toa design contest in which the students design and build from a kit of parts a more significant machine that competes in a contest held at the end of the course. The course is open to all and is appropriate for anyone interested in mechanical devices, design, and the design process.

J M ENGR 2410 Mechanics Of Deformable Bodies: 3 semester hours

Prerequisites: MATH 1900 and ENGR 2310. Normal and shear stresses and strains. Stress-strain diagrams. Hooke's law and elastic energy. Thermal stresses. Stresses in beams, columns, torsional members, and pressure vessels. Elastic deflection of beams and shafts. Statically indeterminate structures. Mohr's circle of stress. Stability concepts.

J M ENGR 3010 Computer Aided Design: 3 semester hours

Prerequisite; J M ENGR 1413. Computer aided design, analysis and optimization of parts and assemblies; solid modeling of complex surfaces, creation of detail drawings, dimensioning and tolerancing; assembly modeling, assembly constraints, interference checking; motion constraints, force and acceleration analysis, thermal analysis; part optimization for weight, strength and thermal characteristics using Unigraphics software.

J M ENGR 3200 Thermodynamics: 3 semester hours

Prerequisites: MATH 1900, CHEM 1111 and PHYSICS 2111. Classical thermodynamics; thermodynamic properties; work and heat; first and second laws. Entropy, irreversibility, availability. Application to engineering systems.

J M ENGR 3221 Mechanical Design And Machine Elements: 4 semester hours

Prerequisites: J M ENGR 1414, J M ENGR 1415, J M ENGR 2410, J E MATH 3170. Provides a thorough overview of the steps in the engineering design process and introduces analytical/quantitative techniques applicable to each step. Topics include recognition of need, specification formulation, concept generation, concept selection, embodiment, and detail design. Includes an introduction to several classes of machine elements such as bearings, gears, belts, and springs. Underlying analytical model of the machine elements are presented along with guidelines about designing and choosing such elements for practical applications. A case study from industry will emphasize how the steps of the design process were done as well as the rational for choosing particular machine elements.

J M ENGR 3250 Material Science For J M ENGR: 4 semester hours

Prerequisites: CHEM 1111. Introduces the chemistry and physics of engineering materials. Emphasis on atomic and molecular interpretation of physical and chemical properties, the relationships between physical and chemical properties, and performance of an engineering material.

J M ENGR 3360 Material Science For J C ENGR: 3 semester hours

Same as J M ENGR 3250, but without the lab. Prerequisite: CHEM 1111. Introduces the chemistry and physics of engineering materials Emphasis on atomic and molecular interpretation of physical a chemical properties, the relationships between physical and chemical properties, and performance of an engineering material.

J M ENGR 3700 Fluid Mechanics: 3 semester hours

Prerequisites: J E MATH 3170 and ENGR 2320. Fundamental concepts of fluids as continua. Viscosity. Flow field: velocity, vorticity, streamlines. Fluid statics: hydrostatic forces manometers. Conservation of mass and momentum. Incompressible inviscid flow. Dimensional analysis and similitude. Flow in pipes and ducts. Flow measurement. Boundary-layer concepts. Flow in open channels.

J M ENGR 3710 Principles Of Heat Transfer: 3 semester hours

Prerequisites: J M ENGR 3200, J M ENGR 3700 and J E MATH 3170. Introductory treatment of the principles of heat transfer by conduction, convection, or radiation. Mathematical analysis of steady and unsteady conduction along with numerical methods. Analytical and semiempirical methods of forced and natural convection systems. Heat exchangers: LMTD and e-NTU analysis. Boiling and condensation heat transfer. Radiation between blackbody and real surfaces. Radiation network analysis.

J M ENGR 3721 Fluid Mechanics Laboratory: 1 semester hour

Prerequisites: J M ENGR 3700. Physical laboratory exercises focusing on fluid properties and flow phenomena covered in J M ENGR 3700. Calibration and use of a variety of equipment; acquisition, processing, and analysis of data by manual as well as automated methods.

J M ENGR 3722 Heat Transfer Laboratory: 1 semester hour

Prerequisites: J M ENGR 3721 and J M ENGR 3710. Physical laboratory exercises, including some numerical simulations and computational exercises, focusing on heat-transfer phenomena covered in J M ENGR 3710. Calibration and use of variety of laboratory instrumentation; acquisition, processing, and analysis of data by manual as well as automated methods; training in formal report writing.

J M ENGR 3750 Fluid Control and Power Systems Theory And Practice: 3 semester hours

Prerequisite: J M ENGR 3700. Topics to be covered include: design of hydraulic and pneumatic control and power systems using advanced concepts and analytical tools; analysis of fluid flow through small orifices and between parallel and inclined planes; theory of spool and flapper valves; physical configuration of practical components: pumps, motors, fluid lines and valves, accumulators and storage devices; integration of components into practical systems, development of realistic performance diagrams using MATLAB Symulink; application of performanc diagrams in design and analysis of fluid power systems.

J M ENGR 4000 Independent Study: 3 semester hours

Prerequisites: Junior standing and consent of faculty advisor. Independent investigation of a mechanical engineering topic of special interest to a student performed under the direction of a faculty member.

J M ENGR 4041 Current Topics In Engineering Design: 1 semester hour

Case studies of engineering failures, class discussion & short written papers are used to illustrate and stress the importance of engineering teamwork, ethics, and professional standards within the mechanical engineering discipline. Working in teams students develop and present a case study on a topic of their choice. Guest lecturers introduce contemporary topics such as product liability, environmental regulations, green design, appropriate technologies, and concurrent engineering.

J M ENGR 4110 Mechanical Engineering Design Project: 4 semester hours

Prerequisites: J M ENGR 3221. Feasibility study of an open-ended, original design or a creative redesign of a mechanical component or system requiring the application of engineering science principles. Feasibility is subject to economic, safety, legal, environmental, ethical, aesthetic, and other constraints in a competitive manufacturing environment. Project teams perform the detailed design and optimization of the concept developed in the feasibility study. Presentations and reports with manufacturing drawings and prototypes are completed by each team.

J M ENGR 4120 Design of Thermal Systems: 3 semester hours

Prerequisites: Senior Standing. Analysis and design of advanced thermo-fluid systems. Student teams participate in the design process which could involve research, design formulation, codes, standards, engineering economics, a design project report, and formal presentations. Topics include: thermal-fluid systems and components, such as power, heating, and refrigeration systems, pumps, fans, compressors, combustors, turbines, nozzles, coils, heat exchangers and piping.

J M ENGR 4170 Dynamic Response Of Physical Systems: 2 semester hours

Prerequisites: ENGR 2320 and J E MATH 3170, J M ENGR 4170 and J M ENGR 4180 must be taken in the same semester. Free and forced vibration of mechanical systems with lumped inertia, springs, and dampers. Methods of Laplace transform, complex harmonic balance, and Fourier series. Electrical analogs. Introduction to Lagrange's equations of motion and matrix formulations. Transient response of continuous systems by partial differential equations, by rayleigh methods, and by lumped parameters.

J M ENGR 4180 Dynamic Response Laboratory: 1 semester hour

PREREQUISITES: J M ENGR 4170 and J M ENGR 4180 must be taken during the same semester. Laboratory problems focusing on materials covered in J M ENGR 4170.

J M ENGR 4250 Material Selection In Engineering Design: 3 semester hours

PREREQUISITES: Senior standing. Analysis of the scientific bases of material behavior in the light of research contributions of the last 20 years. Development of a rational approach to the selection of materials to meet a wide range of design requirements for conventional and advanced applications. Although emphasis will be placed on mechanical properties, other properties of interest in design will be discussed, e.g., acoustical, optical and thermal.

J M ENGR 4310 Control Systems I: 3 semester hours

Same as J E ENGR 4410. Prerequisites: J E MATH 3170, J E ENGR 2300. Introduction to automatic control concepts. Block diagram representation of single and multi-loop systems. Multi-input and multi-output systems. Control system components. Transient and steady-state performance; stability analysis; Routh, Nyquist, Bode, and root locus diagrams. Compensation using lead, lag, and lead-lag networks. Synthesis by Bode plot plots and root-locus diagrams. Introduction to state-variable techniques, state transition matrix, state-variable feedback.

J M ENGR 4440 Solar Energy: 3 semester hours

Prerequisites: J M ENGR 3200, J M ENGR 3700, and J M ENGR 3710. This course will cover the following topics: extraterrestrial solar radiation; solar radiation on the earth's surface; weather bureau data; review of selected toics in heat transfer; methods of solar energy collection including flat panel and concentrating collectors; solar energy storage; transient and long-term solar system and performance.

J M ENGR 4630 Nanotechnology: Concepts And Applications: 3 semester hours


J M ENGR 4700 Sustainable Environmental Building Systems: 3 semester hours

Sustainable design of building lighting and HVAC systems considering performance, life-cycle cost and downstream environmental impact. Criteria, codes and standards for comfort, air quality, noise/vibration and illumination. Life cycle and other investment methods to integrate energy consumption/conservation, utility rates, initial cost, system/component longevity, maintenance cost and building productivity. Direct and secondary contributions to acid rain, global warming and ozone depletion.

J M ENGR 4810 HVAC Analysis and Design I: 3 semester hours

Prerequisites: Senior standing. Moist air properties and the psychrometric chart. Classic moist air processes and design procedures for heating and cooling systems. Design of heating, ventilating, and air conditioning systems for indoor environmental comfort and health. Basics of heat transfer in building structures. Solar radiation effects on building heat transfer. Calculation procedures for the analysis of heating and cooling loads in buildings.

J M ENGR 4820 HVAC Analysis and Design II: 3 semester hours

Prerequisites: Senior standing. Energy calculations to estimate the quantity of energy needed to heat and cool building structures. Fundamentals of incompressible flow, basics of centrifugal pump performance, and design procedures for water piping systems. Space air diffuser design to assure that temperatures, humidities, and air velocities within occupied spaces are acceptable. Air duct design and fan analysis for optimally distributing air through building air duct systems. Performance analysis of refrigeration systems, including the effects of pressure losses and heat transfer. Direct contact heat and mass transfer.

J M ENGR 4900 Engineering Project Management: 3 semester hours

Basic fundamentals and advanced concepts of engineering project management applicable to projects and programs, both large and small. Project management skills, techniques, systems, software and application of management science principles will be covered and related to research, engineering, architectural, and construction projects from initial evaluations through approval, design, procurement, construction and startup.